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1. Introduction

Carrier Sense Multiple Access with Collision Detection (CS!A/CD) is a

channel access protocol for packet broadcasting local area networks. This

protocol allows user stations to contend for time on a shared channel by

multiaccessing it in a random fashion. In an attempt to reduce the frequency

with which broadcast message packets collide on the shared channel, Ethernet

(Metcalfe and Boggs 1976) and IEEE 802 (IEEE 1985) use a technique known as 1-

persistent CSMA/CD with binary exponential backoff (Goodman et al. 1988). An

alternative technique proposed for reducing the frequency of colliqions is p-

persistent CSMA/CD (see, for example, Stallings 1987 and Takagi and Kleinrock

1985a); this protocol is considered in this paper.

The dynamic behavior and performance of unbuffered CSMA/CD systems has

been studied extensively (e.g., Lam 1980, Takagi and Kleinrock 1985a, and

Tobagi 1980). These studies assumed that there are an infinite number of

network users and each user can have at most one packet in the message queue

at any time (called an infinite source model). This simplifying assumption has

been relaxed in recent studies on CSMA/CD svstems: Apostolopoulos and

Protonotarios (1986), Goodman et al. (1988), Hasti, Leighton and Rogoff

(1987), Park and Bartoszvnski (1990a), Park and Bartoszvnski (1990b), Takagi

and Kleinrock (1985b), and Tasaka (1986). In these studies, a finite number of

users are considered to have message queues with finite or infinite capacity

(called a finite source model or a buffered CSM-A/CD system)

Among these studies on buffered CSM.AiCD. the following authors considered

p-persistent CSMA/CD. Under the assumption of finite capacity queues,

Apostolopoulos and Protonotarios (1986) modeled the message queueing process

as a two-dimensional semi-Markov chain. With the state space reduced to a two-

dimensional space, it was necessary to employ an iterative approximation

procedure to obtain the mean packet delay in steady; state. The transmission

probability p was arbitrarily set equal to the inverse of the number of busy

users in the beginning of each contention period. Thus the dependency of the

..an packet delay on the control parameter D .,as not investigated. Takagi and

Fleinrock (9S 5b) developed a stationary; joint probabilitv zenera7 ;Ftunction



(PGF hereinafter) of queue lengths for a system with two users, and obtained

an explicit formula for the mean packet delay based on that PGF. An exact

joint PGF of the queue length vector for a system with more than two users was

first developed by Park and Bartoszynski (1990b). Further, they obtained

stability conditions analytically based on the PGF.

In implementing p-persistent CSMA/CD the major problem is to determine

the value of p so as to minimize the response time for users while maintaining

stability of the system. In this paper an approximation procedure is developed

to compute the optimal p which leads to a stationary operating mode and at the

same time yields the minimum mean packet delay in equilibrium. An optimization

of the p-value with respect to the response time has not been studied for a p-

persistent CSMA/CD system with more than two users, though it has been carried

out for slotted ALOHA by Saadawi and Ephremides (1981) and Sidi and Segall

(1983).

In the next section, the p-persistent CSMA/CD channel access protocol is

described and the queueing dynamics under this protocol is modeled as a multi-

dimensional semi-Markov chain. A stationary PGF of packet backlog, i.e., the

sum of all queue lengths, is obtained in Section " based on the joint PGF of

the queue length vector. in Section 4 the Kolmogro': forward equation is

derived applying an M/G/l approximation to the stationary PGF of packet

backlog, and an iterative procedure is developed to evaluate the mean packet

delay in equilibrium and optimize p with respect to the mean delay. A numeric

analysis is conducted in Section 5 and the analytic results are compared with

simulation results demonstrating the accuracy of the proposed approximation

scheme. Section 6 contains concluding remarks.

2. A Semi-Markovian Model of the Message Queueing Process

A brief description of the p-persistent CSMA/CD channel access protocol,

which is sufficient for the reader to follow the subsequent analysis, follows.

The system consists of a single serjer (the channel) and multiple,

infinite-capacit; queues of customers (message packets). The number of queues.

denoted by m, can be as large as 200 in local area networks. The channel time



is slotted with the slot size being the maximum propagation delay, and a slot

size is chosen as the unit of time. Discrete time index t-O,l .... is used to

denote slot boundaries.

If the channel is busy no users attempt transmission (due to carrier

sensing) until ongoing transmissions are completed and the channel becomes

empty again. Once the channel becomes empty, every busy user (i.e., a user

with a nonempty queue) persistently attempts at every C to transmit a message

packet from the top of its queue. In a transmission attempt a user samples a

random number from the uniform distribution over 10,1). If the number is

smaller than p, it starts transmission of a packet; otherwise, it suppresses

the start of transmission. Thus whenever the channel is empty all busy users

contend to seize the channel with an equal chance. If only one among all busy

users samples a random number smaller than p at time C, the user starts

transmitting a packet at t and the packet is successfully transmitted. If two

or more users start transmitting packets at the same C, packets collide, the

collision is detected, and all collided transmissions are aborted before

transmissions are completed.

It is assumed that in each slot at most one .acket arrives at a queue

(which is reminiscent of Poisson process assumption). The probability that a

packet arrives at a queue during a slot is -enoted by .. The numbers of

packets arriving in different slots at the same user are independent, and the

numbers of packet arrivals at different users in the same or different slots

are independent. This message input process (called a geometric arrival

process) implies that queueing processes at different users are symmetric;

viz., queue lengths at individual users are exchangeable random variables

(Billingsley 1979).

Following Takagi and Kleinrock (1985a), the channel state dynamics are

modeled as depicted in Figure I (note that users 3 to m-l in the figure are

assumed to be idle throughout the portion of time shown in the figure). The

channel state alternates between idle periods and busy periods. During an idle

period all users have empty queues, and during a busy period there is at least

one bus,; user. With the assumed message input process, durations of idle

3



periods are independently and geometrically distributed; hence the beginning

of an idle period is a system regenerative point. A busy period is divided

into a number of sub(busv)periods, each in turn consisting of a transmission

delay followed by a packer transmission period.

Figure 1 about here

During a transmission delay no packets are transmitted, even though the

channel is empty, since all busy users continually sample random numbers

exceeding p. A transmission delay terminates at time t when one or more busy

users sample random numbers smaller than p and start packet transmissions. The

duration of a successful packet transmission is proportional to the length of

the packet transmitted. Packet lengths may vary. However, for analytic

convenience, we use the expected value of packet lengths and denote it by 2.

The duration of an unsuccessful transmission, which is the time to detect and

resolve a collision, is represented by 2'. In a b:aseband system like Ethernet,

it takes at most two slots to detect a collision. Thus 2' is usually much

shorter than ;. A p-persistent CSM.A/CD system is completely described by the

set of parameters, {m,p,.,2,2'), at least for the purpose of our analysis.

Throughout the paper we use the following convention in defining

notations: A boldface capital letter indicates an n-vector or a function with

vector arguments, except that E and P stand for expectation and probab1iiLv,

respectively. An italic capital letter with an underlined superscript, i,

indicates the ith element of an m-vector, and an underlined italic capital

letter signifies the sum of all elements in an n-vector. An italic capital

letter without a superscript or an underscore signifies a set ot a function

with scalar arguments.

Denoting the set of network users by I=(I,2,.., we define Q.-

.el' to be the vector of queue lengths at t, and n- to be the packet

at z. The process QI is characterized as an irreducible. aperiodic

-4



discrete-time Markov chain whose state space is the m-dimensional vector space

-([w , iEI]: w,20, integer).

A semi-Markov chain model of the queueing process is constructed as

follows (which is more accurate than the semi-Markov chain model presented in

Takagi and Kleinrock 1985b): The beginning and the end of each idle period are

regarded as embedded Markov epochs. Within a busy period, the boundaries of

subperiods are chosen as embedded Markov epochs. Denoting these epochs by

k-,1,.., with k-0 at t-0, we have an embedded Markov chain (Qk} which is a

multidimensional random walk. In Figure 1, the embedded epochs are shown by -,

a. the packet backlog at those epochs, Qk' are illustrated.

3. Stationary Probability Generating Function of Packet Backlog

The major difficulty in analyzing the queueing process (Qk) lies in that

queues at different users interfere with each other through the shared

channel. This problem of interacting multiple queues cannot be solved using

classical queu.eing theory. There are no analytic results in the literature for

evaluating the mean packet delay in such a multidinensional queueing system,

and even approximations are difficult to obtain when > 2 (see Kleinrock and

Yemini 1980). In this paper we base the derivation of the mean packet delay in

equilibrium on the stationary PGF of (Q.). By the aggregation of into a

one-dimensional process (2k) we, of course, lose information about behaviors

of individual queues. The approximation needed to overcome this loss of

information can, however, be localized in the delay analysis (as will be shown

in Section 4) so as to generate accurate results (verified by simulation in

Section 5),

To describe the process (Qk) we first define the following random

variables. Notations for each element in a random vector and the sum of all

elements in a random vector are defined according to the convention mentioned

earlier.

X(n) numbers of packet arrivals at respective queues over an n-slot period.

5



Zk numbers of packets that are successfully transmitted from respective

queues at the end of the subperiod which begins at the kth epoch; Note

that either Zk 0 (0-vector) or Z-k -1 for some i and Z; -0 for all joi.

Rk duration (in number of slots) of the transmission delay in the sub-

period beginning at the kth epoch.

Lk duration (in number of slots) of the packet transmission period in the

subperiod beginning at the kth epoch.

Uk :"Qk+l- Qk"

Bk (iEI: Qj' >l), i.e., the set of busy users at the kth epoch.k XQ(Zk)

B((Rk):- (iEI" Q O, ( l}, i.e., the set of users who are idle at the kth

epoch, but become busy by the end of the transmission delay in the

subperiod beginning at the kth epoch.

The process (Q.) can now be recursively defined as

k+l" Qk+Lk where Uk,- 9(l) if 2k=0; k- X(Rk+Lk)-Zk otherwise. (1)

In this equation S(l) represents rardom variable .' 1) with the constraint

X(1)t 1. Under the geometric input process, X(l) has a binomial distribution

with parameters n and A. Therefore, if Q.=O (i.e., if the kth epoch is the

beginning of an idle period), Q,+l follows a truncated binomial distribution

given by

P(-Qk~ 1-qIQ2k0) - :5l q:S M. (2)

Note that Qk+l given Qk-0 is the packet backlog at the start of a busy period.

Next, if 2k! 1, the random drift Uk is the sum of random variables X(Rk),

X(Lk) and "Zk' Unfortunately, the latter variables are stochastically

dependent on each other in a complex way. First, L (and hence X(L )) depends

on Z.. Namely, Lk= ' if Zk 0 and Lk- 2 otherwise (i.e., if Zk-l). Random

variable Z. in turn depends on IBkI and !Bk(Rk)I since the success of a packet

transmission depends on the number of busy- users at the end of the transmis-

sion delav, which is the sum of IBk l and 13.(' ( . The latter, ;3.(Rk)

depends on X(R;,). Further, Rk and '-(Xk) are joint1y dependent on k , and

6



finally IBkj is uniquely determined given Qk' but stochastically dependent on

Qk" These stochastic dependencies are summarized in Lemma 1 below. A detailed

analysis of these stochastic dependencies and the resultant conditional PGF of
P

Qk+l given Qk 1 can be found in Park and Bartoszynski (1990b). A derivation of

the latter PGF and the proof of Lemma 1 are summarized in Appendix I at the

end of this paper.

Lemma 1: For any k with Qk>0,

E(U~kIQk)- EE{X(Rk)+EE[E(Lk)(Zk]-Zk IBuJRk)I IRk,:K(Rk)] 1 Bk1I Qk}I.

An optimization of the p-value with respect to the mean packet delay has

been studied for slotted ALOHA, as mentioned earlier in Section 1. Compared

with slotted ALOHA, the delay analysis and optimization of the p-value is

significantly more complex for p-persistent CSMA/CD. The source of additional

complexity is the stochastic dependencies among the random variables as

described in Lemma 1. These stochastic dependencies stem from the carrier

sensing and co1ision detection mechanisms which have been added to the

slotted ALOHA protocol in devising p-persistent CS'1A/CD (see Szpankowski 1988

and Tsvbakov and Mikhailov 1980 for a Markov chain model of slotted ALOHA with

buffered users). In this paper the stochastic dependencies among Lk, !k, Rk'

X(Rk) and 13k are exactly incorporated in the delay analysis. An

approximation is introduced to simplify the dependency of 12.1 on

The process { k ) is a random walk with random drifts {Lk). The precess is

uniformly downward bounded meaning that P(L4<-l)-O for all k. It also

possesses an important property 'alled the bounded homogeneity, which is

described in the following lemma (see Appendix I for the proof):

Lemma 2: For any k, k', Qk and Q., such that lBkl= Bk I, P(Lk-UlQk)-

e , :( 1t Ue t o).

Def ine Fk(s ) to be the PGF of Q.. In view of (1) ,,e write



Fk+1 (s)- Fk+l(sIQ=;(O)P(!Qk=O) + Fk,1 (sI")k>O)P Qk>O) w

Letting H(s):- F k+l(sI-Qk=O), we obtain from Equation (2)

H(s)-

By Lemmata 1 and 2 we may write

Fk+1( sI2k>O)- EL I kEE{ is- IB k1} f 2k>O]=

-q s U P(U,=L.J 3, =b) P(13. =b 12k=q) \!lkq (5)
P(2, >O) q1 51 u 1,

Deie ,(s113k 1 5  - __IsP(kI3,i) i.e., the conditional PGF of

~kgiven 13.1-b. By Lerrnna 2, for any b5-O. G(sjb5,: k (s'3. =) is indeperndenz

orf k a n 0, B': setting s' =s for all e in Eqrv"I n (A4) in Appendix I, -we

get:

G(slb)= - *-]L?( S lkA

{n(IO ) (6)

"ote that index j in Equation (6) represents the rumlber 1 .

By substituting (6) into (5), (4)-(5) into (3), and then bv passing k to

In 3, Te st~ationary, PGF of ,), denoted b,; -,s), is .:ritt-en as



min(qm)

F(s)- H(s)P(Q-0) + / G(sjb)P(IBi-bI2-q)P(Q-q) (7)
q-1 b-1

As in (7) we simply drop the time index k from an argument to indicate its

quantity in steady state.

4. Delay Analysis

In the sequel, we write FkJ)(C) to denote the jth partial derivative of

F(s) with respect to s, evaluated at s=c. We need to evaluate F(l)(1) to

obtain the mean packet backlog at an embedded epoch in steady state, which in

turn is used to evaluate the mean packet delay. Analytic evaluations of F(s)

and its derivatives are difficult to obtain mainly because the conditional

probability P( j3=b12=q) cannot be evaluated explicitly in the presence of

inLeractions among queues. Therefore, we introduce an M/G/l approximation in

formulating this probability

in this approximation, we assume that in steaiv state the message queue

at a user behaves like a discrete M/G/l queue independently of other queues.

The queue at a user in the CSMA/CD system inaeed has a single server (the

channel) and geometric arrivals (a discrete version of Poisson arrivals) of

message packets. But how about the service time? The service time for a packet

begins at the point when the packet is promoted to the top of its queue. The

service time is defined, in the context of an M/G/l system, to consist of: (i)

a number of sub(busy)periods, since that beginning point, during each of which

the packet is not transmitted (oue to sampling a random number greater than p)

or is involved in a collision: plus (ii) the subperiod in which the packet is

finally transmitted with success. This service time is actually affected by

other busy users' contention for the server. Furthermore, the set of busy

users may change during the service time of a particular packet. The

assumption of independence (or "no interference") among the qieues in steady

state is thus introduced so that service times are i.i.d. in steadv state.

Aih this assutption, we now mav write

9



P( JB I-b)- [ Mb0b(1-6) m -b  (8)

where 0 is defined to be the steady-state probability of a user h i.,g a non-

empty queue at an embedded epoch.

The no interference assumption for the steady-state behavior of multiple

queues should lead to a closer approximation when it is applied to p-

persistent CSMA/CD than when applied to slotted ALOHA. This is because the

former suffers less from interference (viz., collisions) than the latter due

to additional controls, carrier sensing and collision detection. The

approximation in (8) is motivated by the results in Sidi and Segall (1983)

where an M/M/l approximation is applied to the slotted ALOHA de:nonstrating

good accuracy over a wide range of system parameters. It should be noted that

the approximation is limited only to computing 9, and the rest of delay

analysis exactly reflects the dynamic behavior of interacting multiple queues.

In-orporating (8) into (7) and using the equation F(O)- P(2-0), wc obtain

Fs)H(s)FOIq) + s0)r(sj5,7cI6) (9)

where VsH) 1 G(s~b) b b (1-9) M-5 (10)

b-i

Taking the first derivatives of both sides of (9) yields

F l)(sle)_ [Ha)(s)F(019) + V(1)(sl9)(F(sl )-F(ol9g) ]/fl-v(slg))- (11)

By evaluating Equation (11) at s-1 and using the condition F(l9)- V(l 9)- 1,

the equilibrium differential equation (i.e., Kolmogrov forward equation in

equilibrium: see Kleinrock 1975) can be derived as

0 - (1)(1)F( ) + ((-p1 (]2)



which can be rewritten as

F(06)- V(l)(lI9)/(V(1)(IlH)-H(I)(1)). (13)

Here H( )(1) and V(1)(110) are the expected drift of packet backlog during an

idle period and that during a sub(busy)period, respectively. From (4) we get

H() - m(/1)-(l-) n). V(1)(I) is obtained simply by replacing G(slb) by

G(l)(lb) in the RHS of Equation (10). G(1 )(lb) is the expected drift of

packet backlog over a subperiod beginning with b busy users, and is derived in

Appendix II using Equation (6).

In light of (12), the condition V(')(115)< 0 must be satisfied for the

system to achieve equilibrium. in Equation (10) we see that V(1)(lI1) is the

marginal expectation of G ()(11b) over bl .. m, which in turn is equivalent

to E(U,7k ,>O). Thus the equilibrium equation (12) implies that a necessary

condition for stability of p-persistent CSM%/CD (i.e., ergodicitv of (Qt1) is

approxima tel given by E(U 1'>0)< 0. Furthermore, bv Pakes' (1969) lemma, the

latter condition is also sufficient for erzodicit: of the one-dimensional

random walk (Q, !. It can be easily proved that IQ is Przodic if and only if

(Q.) is ergodic. Therefore, the condition E(kIQ>O)< 0 can be regarded as a

sufficient and necessarv condition for stability. However, a theoretical proof

of this assertion is difficult and has not been established in the literature.

The reader is referred to Park and Bartoszvnski (1990b) for a theoretical

analysis of stability conditions for p-persistent CSMA/CD. Some of the main

results in that paper are su-arized in the following for later reference in

Section 5. The conjecture below has been numerically established.

Lemma 3: (Q,) is recurrent if G( 1 )(lIb)=E(UkLIBkI 5) < 0 for all b-l ,...m, and

only if nAr1+(l-p)M/.l-(l-p)m)1 - I.

Conjecture.: Given system parameters (m.X.2,i'}. for any b there exist pL(b)

and D..(b) sich thar G (b):5 0 if and n- (b),

11 ii: a jP



Further, (QC) is recurrent if PL(1): PS PU(m) since PL(b)< PL(b,) and

Pu(b)< pU(b') for any b> b'.

Recall that 6 is the probability of a user being busy in steady state,

and that F(018) is the conditional probability of all users being idle in

steady state given the value of 9. It follows that, under the assumption of

independent queues, we must have 1-8- F(019 )/
m. We thus compute the value of

9 iteratively using Equation (13) until the following convergence criterion is

met:

19 - {l-F(0 9)1/m)I < C. (14)

The function f(9):- 6+F(CI9 )l/m-l is monotone increasing in 9 and changes sign

once in the range (0,1) of 9. Therefore, a bisecting search method can quickly

find the value of 9 satisfying (14) even for a extremely small value of E.

Let ; be the value of 9 satisfying (14). We can now evaluate F 1 )(Ii) by

applying L'Hospiral's rule to (11) and then replacing the RHS of Equation (13)

for F'0j) .C/

=( )( ] - (I (! (2) l H( 2 )  -,V ! ( I )

2 vc1( ,) [v) i(1(l ) -F :)(I)]. (15)

In this equation, H(2 )(I)- r(m-1)A 2/(1-(l-1) m) from (4), and V(2 (11) is

obtained simply by replacing G(slb) by G 2)(ljb) in the RHS of Equation (10).

A derivation of G(2)(1b) is provided in Appendix II.

Recall that F(1)(lIi) is the mean packet backlog observed only at the

embedded Markov epoch. In order to obtain the steady-state mean packet delay

observed at an arbitrary slot boundary t, we need to evaluate the mean packet

backlog at an arbitrary t in steady state (see Takagi and Kleinrock 1985b for

a similar treatment). If t is in an idle period, the backlog is zero. The

prcbability that an arbitrary t is found in a busy period when the system is

in steady state is given by il-F(0VP)). Letting 0 denote the mean packet

backlog at an arbitrary t in steady state, we have

12



C- (l-F(ojP))S/T (16)

where T is the expected duration of a sub(busy)period in steady state, and S

is the expected backlog accumulation over a subperiod in steady state.

First, to evaluate T, we note that the duration of a subperiod is i.i.d.

for all subperiods starting with the same number of busy users, due to the

bounded homogeneity (see Lemma 2). Letting 6(b) denote the expected duration

of a subperiod starting with b busy users, we may write T- ET16(b)P(1Bj-b).

Furthermore, due to regeneracy of the queueing process the duration of a

subperiod starting with b (>0) busy users converges a.s. to E(RI+LIIIB1 I-b)

provided that the process is ergodic. Consequently, for any q>O we have

6(b)- E(R,+L 1I,L= E{R+E[E[LlIjll 'Rl~jj(R.)I] iBll-b} (17)

reflecting the stochastic dependencies among Rk, L. and Z (see Lemma 1).

Define r(slb) to be the conditional PGF of , -L1) given IBli-b>O. This

PGF and 6(b)- F(1)(11b) are derived based on (17) in Appendix III. Using (A9)

in the Appendix and Equation (8) we get

7- r(l)(11I ) 95 (1-;) mb. (18)

b-1

Turning to S in (16), let us first define 3(q) as the expected backlog

accumulation over a subperiod beginning with q outstanding packets so that S-

z00l(q)P(Q-q). To derive 3(q) for q>O, we define j(ylqb) to be the total

time (in number of slots) that (2 spends in state v during the subperiod

which starts with q packets waiting at b (al) busy users. Due to bounded

homogeneicy, (yjq,b) is i.i.d. for all subperiods that start with q waiting

packets and b busy users. Further, it converges a.s. to its expected value if

the queueing process is ergodic. Therefore, for an', q>O we have

13



iminiq~m)
c r( y E (yjq,b) P(jB1-bjQ-q). 

(19)
y-q b-

The process (Q is non-decreasing during a subperiod and the packet arrival

process is time homogeneous. Consequently, the average backlog at an arbitrary

slot boundary in the subperiod which starts with q waiting packets and b busy

users, or Z 0yE (ylq,b)/6(b), is estimated by q+(.5)mA6(b). We thus can write

y- q

O COmin qm)

S- (q)P(Q-q)- 6(b)q+(.5)m6(b)} P(IjI-bIQ-q)P(Q--). (20)

q-i q-1 b-1

From (9) we see that Z =qP(!_q)- d[V(s[H)(F(slH)-F(0[)} sl- (116)+

V(1)(I16)(I-F(OI9)). Incorporating the latter and (8) into (20) we get

s- 7 .  (+ ((b b - . (21)

b=1

Finally, using Little (1961)'s theorem the mean packet delay in steady

state, D, is given by

D- a/mA- (1-F(0Ij))S/nT. (22)

The mean packet delay, D, includes (i) the elapsed time from the arrival of a

packet until the packet is promoted to the top of the queue, (ii) a number of

sub(busy)periods during each of which the packet is not transmitted or is

involved in a collision, and (iii) the subperiod in which the packet is

successfully transmitted.

5. Numeric and Simulation Experiments

The algorithm to compute D given parameters (p,rX,2'1 was encoded in

Fortran 77; it first finds ; and F(01;) satisfying the condition 14) with

,I.E-L0, and then compute D using Equations (15) through K2).

14



Computational results are shown in Tables 1 and 2, respectively, for two

different cases. The two cases have the same values for m (-50) and 2' (-3),

but different values for A and i. The latter parameters were set to 1.6E-4 and

75, respectively, in Case 1 to represent a high utilization of the channel

capacity; and to 1.2E-4 and 25, respectively, in Case 2 to represent a low

utilization. Note that by Lemma 3 an upper bound on the channel capacity

(i.e., the maximum achievable throughput rate in equilibrium) can be given by

1/2. The ratio of the total input rate, mA, to 1/2 is 62% in Case I and 15% in

Case 2.

Tables I and 2 about here

in view of the conjecture in Section 4, the range pL(l),pU(m)] of p that

guarantees stability is provided in each table. Among the steady-state

measures reported in the tables, the new notation, 3+, signifies the set (b:

G (')(I b"> 0K The p-.:alues, at which V (1) (1)< . and B+ is nonempty, yield a

finite mean packet delay, though not satisfying the sufficient condition for

stability given in Lemma 3. It should be noted, however, that the delay at

zp-Djm) is close to the minimum delay: in Case 1 the minimum delay was 128.6

at the optimal p-value .16, while the delay at p-pu(50)-.08 was 140.4,

exhibiting a 9% gap from the minimum; in Case 2 the gap was only 2%. It is

also notable that the expected number of busy users in steady state, or E(IBI)

(- 5), was 1.5 and 1.1, respectively, in Cases 1 and 2 when p was set at the

optimum. This indicates that there is little interference among queues in

steady state if p is optimized with respect to the mean packet delay, which

justifies the M/G/l approximation. Indeed, the ratio of collisions to all

packet transmissions observed in simulation runs was about 5% and 1% in Cases

1 and 2, respectively, with the optimal p-values.

The simulation model was written in SLAM II (Pritsker 1984) and run on an

B1 3',T AP mainframe. In the simulation model, we generated packet arrivals

for each user so that the interarri.-al times follow an exponential

15



distribution with intensity A. It is well known that the geometric distribu-

tion of interarrival times can be closely approximated by the exponential

distribution when A is small (Feller 1968). This exponential approximation

tremendously reduced the computing time. Approximately 5,000 packet transmis-

sions were collected to estimate the mean packet delay for each p-value. The

first 500 observations were discarded to eliminate the initial transient

period (see Wilson and Pritsker 1978, Schruben and Goldsman 1985).

The simulation results are shown in Figure 2 along with the numerical

approximation results. The solid line and dotted line show approximation

results for Cases 1 and 2, respectively. Simulation results for Cases I and 2

are plotted using symbols '+' and '*', respectively, and show good agreemcrt

with approximation results. The delay (versus p) curve is U-shaped and the

minimum delay is attained in the neighborhood of the maximum p-value that

leads to equilibrium (viz., near the bottom right corner of the U curve). A

similar, yet different, pattern of the delay curve was found for slotted ALOHA

systems by Sidi and Segall (1983). The CSM A/CD achieves close-minimal mean

packet delays over a much wider range of the p-value than the slotted ALOHA,

presumably due to the additional medium access con-rol mechanisms - carrier

sensing and collision detection.

Figure 2 about here

6. Conclusion

A multidimensional queueing process with interactions among individual

queues arises in many computer and communication systems such as coupled

processors (Szpankowski 1988), ALOHA satellite communication (Sidi and Segall

1983) and CSMA/CD local area networks. However, there are no analytic results

for computing the mean queueing delay in such a system with more than two

queues.
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In this paper we have shown that the mean packet delay in CSMA/CD

networks can be obtained quite accurately using an M/G/l approximation. The

success of this approximation method is ascribed to the following: (i) The

message queueing process has the bounded homogeneity property (Lemma 2). With

this property, after introducing the approximate distribution of the number of

busy users (Equation (8)), we could simplify the stationary PGF of the packet

backlog (Equation (7)) into a product form (Equation (9)). (Note that in

Equation (9), ZP(2- q ) in Equation (7) is factored out as (F(sIj)-F(0I8)i.)

(ii) The delay analysis incorporates an exact PGF for the random drift of the

packet backlog over a period between two consecutive embedded Markov epochs

(Equations (2), (6) and lemma 1). (iii) Finally, the interference among queues

is actualiv minimal in steady state if the control parameter p is optimized.

A practical and easy way to determine the p-value would be to set it

equal to pu(m): this guarantees stability (by Lemma 3 and Conjecture) and at

the same time yields a close-minimal mean packet delay in equilibrium (as

numericaIl,: demonstrated in Section 5). According to Conjecture, for given

system parameters 1:2,, P(m) is obtained v solving G(1)(lHm)- 0 for p.

Substituting n for b in Equation kA5) in Ap-_:.dix II, we obtain

A (I (23)

Rewriting (23) we see that G(l) 0 is equivalent to

.f(q):C= -cqM+c 2qm lc -O (24)

where q-l-p, cl- c2+A(P'-1), c2- mX(2-2')-l and c3= XV'. The equation f(q) has

the global minimum at q -(m-l)c 2 /mc1 . It has exactly two solutions (q,,q 2 )

such that 0< q1< q < q2< 1 provided that AI-< 1 (which is a necessary

condition for stability by Lemma 3) and f(q*)< 0. A bisecting search over the

range (O,q*) of q can quickly find q1 . and then we have p.,(.-)- i-r,

17



Our approach -- viz., incorporating an exact transient analysis of

multiple interacting queues into an M/G/l approximation for evaluating average

delay in steady state -- can be employed to analyze other CSMA/CD protocols.

It would be interesting to attempt applying this approach to the analysis of

new variants of CSMA/CD that are designed for high-speed broadcast bus

networks (e.g., p1 -persistent protocol by Mukherjee and Meditch (1988), LCSMA-

CD by Maxemchuk (1988), and a modified CSMA/CD by Lin and Sousa (1990)).

18
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Appendix I. The Conditional Joint PGF of 0k+ Given Q ,O

The joint probability of Rk-r and X(r)-,x iel: O 5xr! conditional on Q.

is given by

P( k- 1Qk - -iE k3 (lX - (I-A) X

K- .L,\ 
(Al)l)

iEI-Bk-Bk (r) ,iE(r)wl

In this equation, w represents the slot in which the first packet since the

beginning of the kth subperiod arrives at user i (who had no waiting packets

in the beginning of the subperiod). It should be noted that Bk (r) is uniquely

determined given Bk and X(r), and Bk is uniquely determined given Qk" Equation

(Al) thus shows that the joint distribution of R, and X(Rk) depends only on

3k' apart from the system parameters p, A, and I. :hat is, the joint

distribution is identical for any k and k' with 3,=3,,, even if QOQ.

The probability of having a collision in the subperiod beginning at the

kth epoch, given Rk r, is

( 0 3 3 (r))- f{l- (I- "' k + B ( )  'c K+' k ) -l !
-(i -ikRvrH)P(l-p)K

{ 'SB +IB (r) I}

(1-(-p) k. (A2)

The probability of having a successful transmission in the subperiod beginning

at the kth epoch, conditional on Rk-r, is simply given by P(Zk OIBk,BK(r))- I-

P(Z k-JOk,(r)). As such, given Rk-r, Zk depends only on B. and B (r). Recall

that B!(Rk ) is uniquely determined by Bk and X(Rk) and that R, and X(R ) are
K K k kkk

'olntlv: dependent on B,. Therefore, Zk is transitive>y dependent onl; on B
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Since X(L k) depends only on Zk. it follows that the random drift Uk depends on

Qk only through Bk* We thus have proved both Lemmnata I and 2.

Let Fk ~IQk#O), where s-[s:,1E=Ij, be the conditional PGF o klgiver,

QkO' and G(slB):- G k(SIB k-3) be the conditional PGF of U k given B k-B which is

independent of k and Qk (by Lermma 2). Then we have

FklsQ#) :- H I siE : - '"! Bk} Qko]1

- 1; (SIB F k (s:sI=i- i,3)- F (s:s;,=O,s_0 vi) (A3

P(Qk'O 1b=l V3::I:131=b 'E3 (3

U:sing (Al) and (A2), function G(sIB) is evaluated as:

Gs3 sX-('Rk) EFE S jF T

L

j-O 7BL z-=0IB'I-j

X {f(s)P(lP)5+-l. s i 1) + cD(s)(,_(,_P)b+j_(b+j)p(lP)b+j-1 X~

x rnj -b-n 11 As.+l-X1  (A4)

20 VA / (lA) ie3&n-



2 2'
where Nl(s)- (Asi+l-' ) and D(s)- 11 (As.+l--) are the PGF's of the

ieI LIiEI

duration of a successful and an unsuccessful transmission period,

respectively. A detailed derivation of Equation (A4) can be found in Park and

Bartoszynski (1990b).

Appendix II. Derivatives of the PGF G(slb) Evaluated at s-1

Taking the first and second derivatives of G(slb), which is given in

Equation (6), with respect to s and evaluating the derivatives at s-I we

obtain

G(1)(Ib)- n b b(l(l-p)b ijP(l-A)/(p-) + (mjm-l)a +

+ + 1 (- (-b+j) , and (A5)

(2G m- b A jj~_A ~_a

+= 21 r X2+a+bj-a
L

+ I-(1-P) b +j )  A 2 (27+2 ')  + 2

+J -(i-P)b +j L [j -1 + 2j,(l-p)/(p-A) + (:+l)X2 (-p) 2/(P-),)21j, (A6)

where a:- (b+j,)p(l-p) b+Plj-1 1 -(1 ) b+n (I-A), b-n w- $-l,
n-0

$ ~(bn (n ~ '-$(]~) (b+fl)(b+ri)()/:
flO n-0
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and xr:- n (]()jznb+n) (1 )2/ 3

n-0

Appendix III. Derivation of the PC.F r(s~b) and Its First Derivative

In this Appendix, a, 0 and 0 defined in Appendix II are used again. Based

on Equation (17) we can write

r-O -O

=r , -

Evaluating the swination over w and then the infinite series over r, we obtain

r(sjb)- + Pjs (_,_~~~)(8

r '(1jb)- P (1 -(1 -P)+Q + (1-(1.. )bJ x



Table 1. Steady State Measures for Case 1 where Mn-50,- 75,V'-3,-1.6E-4

(PL(l)-l.
6 34 4 E-2 , PU(5O)-8.4378E-2)

p E(IBI) V(1)(11P) F(i)(110) T S D

1.144E-2 1 O

1.308E-2 1 2.2886 -.1067 3.9976 98.32 427.39 491.15

1.634E-2 - 2.0754 -.1370 2.9448 91.44 296.99 357.26

1.961E-2 - 1.9466 -.1598 2.4314 86.31 233.08 291.19

2.288E-2 - 1.8611 -.1773 2.1347 82.41 195.91 252.57

2.768E-2 - 1.7778 -.1964 1.8762 78.13 163.28 218.49

3.902E-2 - 1.6721 -.2242 1.5871 71.82 126.27 179.65

5.036E-2 - 1.6194 -.2398 1.4565 68.11 109.17 161.73

6.170E-2 - L.5887 -.2494 1.3832 65.63 99.31 151.51

7.594E-2 - 1.5655 -.2570 1.3273 63.43 91.55 143.64

8.438E-2 - 1.5563 -.2601 1.3047 62.42 88.29 140.43

1.097E-1 39 - 50 1.5405 -.2655 1.2611 60.14 81.63 13,-.19

1.434E-1 29 - 50 1.5337 -.2679 1.2312 58.00 76.36 129.89

1.603E-1 26 - 50 1.5336 -.2679 1.2223 57.14 74.49 128.62

1.727E-1 25 - 50 *

* The system is unstable with V( 1 )(1I) 0.
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Table 2. Steady State Measures for Case 2 where m-50,2-25,2V-3,A-1.2E-4

(PL(l)-
4 .8 3 0 3E-2, PU(50)-I.O722E-1)

p B+  E(IBI) V(1)(17) F ,)(II) T S D

---- -------------------------------------------------------------

2.415E-3 1,2

2.898E-3 1 2.4953 -.0841 6.5053 139.23 964.57 1065.35

3.381E-3 1 2.1872 -.1200 4.1352 128.33 571.65 670.06

4,347E-3 1 1.8287 -.1843 2.3321 109.55 284.79 366.04

4,830E-3 - 1.7190 -.2111 1.9372 101.95 220.65 297.99

7,245E-3 - 1,4373 -.3040 1.1881 76.62 97.77 163.21

2.190E-2 - 1,1502 -.4556 .7534 37.61 22.98 70.03

3.896E-2 - 1.0991 -.4920 .7062 28.19 14.25 56.52

5,361E-2 - 1,0831 -.5042 .6928 24.75 11.66 52.25

7.309E-2 1.0733 -.5119 .6846 22.24 9.97 49.45

1,072E-1 - 1.0677 -.5163 .6791 19.96 8.59 47.32

1.608E-1 33 - 50 1.0691 -.5152 .6775 18.21 7.66 46.33

1.823E-1 29 - 50 1,0712 -.5135 .6778 17.77 7.46 46.27

2.037E-1 26 - 50 1.0738 -.5115 .6784 17.39 7.30 46.28

2.144E-1 24 - 50

---------------------------------------------------- ------------------

* The svstem is unstable with V(')(II) 0.

26



I- -
-- - - -

CL0.0

Z .5 E

(nJ

--- c E E

0 , O .......-- - --------

-' - - -. - - -,_

X4

C) -a -

75, 3 --. E E

to T. M0

E"

•E -0 = - - . . . o -
nu X I- - x T T

U) E-E am.

o g 76

X -6

a X x L0

QII 0J

aLO

- - II
A



Figure 2. Comparison between Approximation and Simulation: D versus p
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